Files
ISTTOK/epics/css/sys-mng-opi/CSS/MARTe/IOGAMs/ATCAadc/ATCAadcDrv.cpp
2019-10-21 16:02:55 +01:00

943 lines
37 KiB
C++

//******************************************************************************
// MARTe Library
// $Log: ATCAadcDrv.cpp,v $
// Revision 1.48 2010/02/09 14:50:59 ppcc_dev
// Significantly increased the PollSleepTimeWakeBeforeUs in order to disallow any
// sleeping in online...
//
// Revision 1.47 2010/01/22 09:29:07 aneto
// pollSleepTimeWakeBeforeUs was only being converted to us if not specified
//
// Revision 1.46 2009/12/15 12:16:51 aneto
// Code cleaning
//
// Revision 1.45 2009/12/03 14:52:13 ppcc_dev
// Sleeps, if time is available, before start busy polling.
// The time to sleep is given by the remaining time until the start of
// the next pulse minus the worst jitter from a sleep and minus the
// desired time, before the beginning of the next pulse, that we want to start
// busy polling.
// The worst jitter decays to zero in order to try to maintain a good performance
//
// Revision 1.44 2009/09/23 12:21:20 aneto
// Cast the header to unsigned int 32 in order to avoid rollover problems
// when it changes the bit sign
//
// Revision 1.43 2009/08/07 09:31:47 aneto
// Allow the autoSoftwareTrigger to work even if the softwareTrigger flag
// is set to false
//
// Revision 1.42 2009/06/23 13:44:19 aneto
// In Linux wait sometime between header synchronisation
//
// Revision 1.41 2009/06/09 09:55:28 ppcc_dev
// Time is read directly from the board header
//
// Revision 1.40 2009/05/21 15:18:34 ppcc_dev
// DigIO does not have outputMap
//
// Revision 1.39 2009/04/21 08:48:42 aneto
// Channel statistics variable weren't being initialised
//
// Revision 1.38 2009/04/14 09:06:10 aneto
// Allow the system to auto-trigger after a specified amount of time
//
// Revision 1.37 2009/04/03 10:02:03 aneto
// lastCycleUsecTime now is true 64 bits.
// This uses the information from the headers to increment an internal counter
//
// Revision 1.36 2009/04/01 15:10:36 aneto
// Bug in the way the modulus was being calculated for the usec time. The bug was in converting from 64 to 32 bits of lastCycleUsecTime
//
// Revision 1.35 2009/03/31 08:11:37 aneto
// Support for multiple input
//
// Revision 1.34 2009/03/26 15:13:21 aneto
// Automatic offset compensation
//
// Revision 1.33 2009/03/16 11:42:16 aneto
// Corrected the polling mode in order to allow different acquisition frequencies
//
// Revision 1.32 2009/03/11 12:31:54 aneto
// Support an html output with information about the driver
//
// Revision 1.31 2009/01/26 17:26:20 ppcc_dev
// Small bugs solved
//
// Revision 1.30 2009/01/26 09:23:51 aneto
// Removed printfs
//
// Revision 1.29 2009/01/26 09:20:38 aneto
// linux support
//
// Revision 1.28 2009/01/22 13:59:18 aneto
// Miror clean up
//
// Revision 1.27 2008/11/28 12:03:13 aneto
// Added bufferNumber
//
// Revision 1.26 2008/11/21 14:16:42 ppcc_dev
// This version works with the new firmware: jet clock+trigger
//
// Revision 1.24 2008/09/30 11:24:49 rvitelli
// Added non-synchronous operating mode.
//
// Revision 1.23 2008/09/30 10:36:03 ppcc_dev
// Minor modifications to both driver and low level module
//
// Revision 1.22 2008/09/16 13:06:57 fpiccolo
// Modified SleepMsec to SleepNoMore to remove jitter on cycle time
//
// Revision 1.21 2008/09/15 16:51:45 ppcc_dev
// Solved few bugs
//
// Revision 1.20 2008/09/09 11:10:36 fpiccolo
// Patch to make it work only with two modules and old firmware
//
// Revision 1.19 2008/09/09 09:29:15 fpiccolo
// Modified driver structure.
// Added SingleATCAModule class
// Added Writing facilities
//
// Revision 1.18 2008/09/04 11:48:52 ppcc_dev
// Minor modifications to the GETData function.
// Removed DisableAcquisition call from the ObjectLoadSetup function
// since was causing a crash.
//
// Revision 1.17 2008/08/19 12:43:29 ppcc_dev
// Corrected memory addresses in memcpy, added simulation code for SoftTrigger
//
// Revision 1.16 2008/08/15 10:41:35 fpiccolo
// Minor stylish modifications.
// Added TimeModule Interface
//
// Revision 1.15 2008/08/01 14:09:26 rvitelli
// First working version
//
// Revision 1.14 2008/07/28 13:50:05 aneto
// Added support for multiple boards.
//
//******************************************************************************
#include "ATCAadcDrv.h"
#include "ConfigurationDataBase.h"
#include "CDBExtended.h"
#include "HRT.h"
#include "Sleep.h"
#include "Console.h"
int32 SingleATCAModule::currentDMABufferIndex = 0;
int32 SingleATCAModule::currentMasterHeader = 0;
#ifdef _LINUX
int32 ATCAadcDrv::pageSize = 0;
int32 ATCAadcDrv::fileDescriptor = 0;
#endif
SingleATCAModule::SingleATCAModule(){
moduleIdentifier = 0;
numberOfAnalogueInputChannels = 0;
numberOfDigitalInputChannels = 0;
numberOfAnalogueOutputChannels = 0;
numberOfDigitalOutputChannels = 0;
int i = 0;
for(i = 0; i < 8; i++)outputMap[i] = 0;
// Input Section //
isMaster = False;
for(i = 0; i < 4; i++)dmaBuffers[i] = NULL;
nextExpectedAcquisitionCPUTicks = 0;
boardInternalCycleTicks = 0;
datagramArrivalFastMonitorSecSleep = 0.0;
boardInternalCycleTime = 0;
lastCycleUsecTime = 0;
packetCounter = 0;
synchronizing = False;
channelStatistics = NULL;
allowPollSleeping = True;
worstPollSleepJitter = 0;
worstPollSleepJitterDecayRate = (1 - 5e-6);
pollSleepTime = 0;
pollSleepTimeWakeBeforeUs = 20;
}
bool SingleATCAModule::ObjectLoadSetup(ConfigurationDataBase &info,StreamInterface *err){
CDBExtended cdb(info);
FString moduleName;
cdb->NodeName(moduleName);
if(!cdb.ReadInt32(moduleIdentifier, "ModuleIdentifier")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: ModuleIdentifier has not been specified.");
return False;
}
int32 master = 0;
cdb.ReadInt32(master, "IsMaster",0);
isMaster = (master != 0);
if(isMaster){
CStaticAssertErrorCondition(Information,"SingleATCAModule::ObjectLoadSetup: Module with identifier %d has been specified as master.", moduleIdentifier);
}
synchronizing = False;
if (isMaster) {
FString syncMethod;
if(!cdb.ReadFString(syncMethod, "SynchronizationMethod")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: SynchronizationMethod has not been specified.");
return False;
}
if (syncMethod == "GetLatest") {
synchronizing = False;
CStaticAssertErrorCondition(Information,"SingleATCAModule::ObjectLoadSetup: synchronization method: GetLatest");
} else {
synchronizing = True;
CStaticAssertErrorCondition(Information,"SingleATCAModule::ObjectLoadSetup: synchronization method: Synchronous on input");
}
}
if(!cdb.ReadInt32(numberOfAnalogueInputChannels, "NumberOfAnalogueInput")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfAnalogueInput has not been specified.");
return False;
}
if(!cdb.ReadInt32(numberOfDigitalInputChannels, "NumberOfDigitalInput")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfDigitalInput has not been specified.");
return False;
}
if(!cdb.ReadInt32(numberOfAnalogueOutputChannels, "NumberOfAnalogueOutput")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfAnalogueOutput has not been specified.");
return False;
}
if(!cdb.ReadInt32(numberOfDigitalOutputChannels, "NumberOfDigitalOutput")){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfDigitalOutput has not been specified.");
return False;
}
int32 detectedNumberOfInputAnalogChannels = 0;
#ifdef _RTAI
detectedNumberOfInputAnalogChannels = GetNumberOfInputAnalogChannels(moduleIdentifier);
#elif defined(_LINUX)
int32 temp = moduleIdentifier;
int32 ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_N_IN_ANA_CHANNELS, &temp);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query number of analog input channels. ioctl returned : %d", ret);
return False;
}
detectedNumberOfInputAnalogChannels = temp;
#endif
if(numberOfAnalogueInputChannels > detectedNumberOfInputAnalogChannels){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfAnalogueInputs is at most %d. Specified %d.", detectedNumberOfInputAnalogChannels, numberOfAnalogueInputChannels);
return False;
}
int32 detectedNumberOfInputDigitalChannels = 0;
#ifdef _RTAI
detectedNumberOfInputDigitalChannels = GetNumberOfInputDigitalChannels(moduleIdentifier);
#elif defined(_LINUX)
temp = moduleIdentifier;
ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_N_IN_DIG_CHANNELS, &temp);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query number of digital input channels. ioctl returned : %d", ret);
return False;
}
detectedNumberOfInputDigitalChannels = temp;
#endif
if(numberOfDigitalInputChannels > detectedNumberOfInputDigitalChannels){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfDigitalInputs is at most %d. Specified %d.", detectedNumberOfInputDigitalChannels, numberOfDigitalInputChannels);
return False;
}
int32 detectedNumberOfOutputAnalogChannels = 0;
#ifdef _RTAI
detectedNumberOfOutputAnalogChannels = GetNumberOfAnalogueOutputChannels(moduleIdentifier);
#elif defined(_LINUX)
temp = moduleIdentifier;
ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_N_OUT_ANA_CHANNELS, &temp);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query number of analog output channels. ioctl returned : %d", ret);
return False;
}
detectedNumberOfOutputAnalogChannels = temp;
#endif
if(numberOfAnalogueOutputChannels > detectedNumberOfOutputAnalogChannels){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfAnalogueOutputs is at most %d. Specified %d.", detectedNumberOfOutputAnalogChannels, numberOfAnalogueOutputChannels);
return False;
}
int32 detectedNumberOfDigitalOutputChannels = 0;
#ifdef _RTAI
detectedNumberOfDigitalOutputChannels = GetNumberOfDigitalOutputChannels(moduleIdentifier);
#elif defined(_LINUX)
temp = moduleIdentifier;
ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_N_OUT_DIG_CHANNELS, &temp);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query number of digital output channels. ioctl returned : %d", ret);
return False;
}
detectedNumberOfDigitalOutputChannels = temp;
#endif
if(numberOfDigitalOutputChannels > detectedNumberOfDigitalOutputChannels){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: NumberOfAnalogueOutputs is at most %d. Specified %d.", detectedNumberOfDigitalOutputChannels, numberOfAnalogueOutputChannels);
return False;
}
if(numberOfAnalogueOutputChannels > 0){
bool hasRTM = False;
#ifdef _RTAI
hasRTM = IsRTMPresent(moduleIdentifier);
#elif defined(_LINUX)
int rtm = moduleIdentifier;
ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_IS_RTM_PRESENT, &rtm);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query IsRTMPresent. ioctl returned : %d", ret);
return False;
}
hasRTM = (rtm == 1);
#endif
if(!hasRTM){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: Module %d specifies %d outputs but does not have RTM module", moduleIdentifier, numberOfAnalogueOutputChannels);
return False;
}
int dims = 1;
int size[2] = {numberOfAnalogueOutputChannels,1};
if(!cdb.ReadInt32Array(outputMap, size, dims, "OutputMap")){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: OutputMap not specified. Assuming sequential order.");
for(int i = 0; i < numberOfAnalogueOutputChannels; i++)
outputMap[i] = i+1;
}
// output order starts from 0 for convenience.
for(int i = 0; i < numberOfAnalogueOutputChannels; i++) outputMap[i]--;
}
if(channelStatistics != NULL){
delete[] channelStatistics;
channelStatistics = NULL;
}
channelStatistics = new StatSignalInfo[NumberOfInputChannels()];
if(channelStatistics == NULL){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not create ChannelStatistics for %d channels", NumberOfInputChannels());
return False;
}
for(int i=0; i<NumberOfInputChannels(); i++){
channelStatistics[i].Init();
channelStatistics[i].decayRate = 0.999;
}
if(isMaster){
if(!cdb.ReadInt32(boardInternalCycleTime, "BoardInternalCycleTime",50)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: BoardInternalCycleTime has not been specified. Assuming %d usec triggering period", boardInternalCycleTime);
}
boardInternalCycleTicks = (int64)(boardInternalCycleTime * 1e-6 * HRT::HRTFrequency());
int32 temp = 0;
if(!cdb.ReadInt32(temp, "DatagramMonitoringFastSleep",2)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: DataArrivalUsecSleep has not been specified. Assuming %d usec sleeping time.", temp);
}
datagramArrivalFastMonitorSecSleep = temp*1e-6;
if(!cdb.ReadInt32(temp, "DataAcquisitionUsecTimeOut",1000)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: DataAcquisitionUsecTimeOut has not been specified. Assuming %d usec of timeout.", temp);
}
double deltaT = temp*1e-6;
dataAcquisitionUsecTimeOut = (int64)(deltaT*HRT::HRTFrequency());
if(!cdb.ReadInt32(temp, "AllowPollSleeping", 1)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: AllowPollSleeping has not been specified. Assuming %d ", allowPollSleeping);
}
allowPollSleeping = (temp == 1);
if(!cdb.ReadFloat(worstPollSleepJitterDecayRate, "WorstPollSleepJitterDecayRate", 5e-6)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: WorstPollSleepJitterDecayRate has not been specified. Assuming %f ", worstPollSleepJitterDecayRate);
}
worstPollSleepJitterDecayRate = 1 - worstPollSleepJitterDecayRate;
if(!cdb.ReadFloat(pollSleepTimeWakeBeforeUs, "PollSleepTimeWakeBeforeUs", 20)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: PollSleepTimeWakeBeforeUs has not been specified. Assuming %f ", pollSleepTimeWakeBeforeUs);
}
pollSleepTimeWakeBeforeUs *= 1e-6;
}
return True;
}
/** Copies the pointers to the DMA Buffers */
#ifdef _LINUX
bool SingleATCAModule::InstallDMABuffers(int32 *mappedDmaMemoryLocation){
int32 boardSlotNums[12];
int32 boardIdx = 0;
int ret = ioctl(ATCAadcDrv::fileDescriptor, PCIE_ATCA_ADC_IOCT_GET_BOARD_SLOT_NS, boardSlotNums);
if(ret != 0){
CStaticAssertErrorCondition(InitialisationError,"SingleATCAModule::ObjectLoadSetup: Could not query the number of boards. ioctl returned : %d",ret);
return False;
}
for(boardIdx = 0; boardIdx < 12; boardIdx++){
if(boardSlotNums[boardIdx] == moduleIdentifier){
break;
}
}
int32 pageInc = ATCAadcDrv::pageSize / sizeof(int32);
for(int32 i = 0; i < DMA_BUFFS; i++){
dmaBuffers[i] = mappedDmaMemoryLocation + pageInc * (DMA_BUFFS * boardIdx + i);
CStaticAssertErrorCondition(Information,"SingleATCAModule::InstallDMABuffers: DMABuffer[%d] %p ",i, dmaBuffers[i]);
}
CStaticAssertErrorCondition(Information,"SingleATCAModule::InstallDMABuffers: dmaBuffers: %p %p %p %p", dmaBuffers[0], dmaBuffers[1], dmaBuffers[2], dmaBuffers[3]);
return True;
}
#else
/** Copies the pointers to the DMA Buffers */
bool SingleATCAModule::InstallDMABuffers(){
int *boardDMABufferPointers = GetBoardBufferAddress(moduleIdentifier);
if(boardDMABufferPointers == NULL) return False;
for(int32 i = 0; i < DMA_BUFFS; i++){
dmaBuffers[i] = (int32 *)boardDMABufferPointers[i];
CStaticAssertErrorCondition(Information,"SingleATCAModule::InstallDMABuffers: DMABuffer[%d] %p ",i, dmaBuffers[i]);
}
CStaticAssertErrorCondition(Information,"SingleATCAModule::InstallDMABuffers: dmaBuffers: %p %p %p %p", dmaBuffers[0], dmaBuffers[1], dmaBuffers[2], dmaBuffers[3]);
return True;
}
#endif
int32 SingleATCAModule::GetLatestBufferIndex(){
uint32 *latestBufferHeader = (uint32 *)dmaBuffers[0];
uint32 latestBufferIndex = 0;
// check which one is the oldest buffer
for (int dmaIndex = 1; dmaIndex < DMA_BUFFS; dmaIndex++) {
// Pointer to the header
uint32 *header = (uint32 *)dmaBuffers[dmaIndex];
//uint32 *footer = header + NumberOfInputChannels() + HEADER_LENGTH;
if ((*header > *latestBufferHeader)) {
latestBufferHeader = header;
latestBufferIndex = dmaIndex;
}
}
return latestBufferIndex;
}
int32 SingleATCAModule::CurrentBufferIndex(){
uint32 *oldestBufferHeader = (uint32 *)dmaBuffers[0];
uint32 oldestBufferIndex = 0;
int64 stopAcquisition = HRT::HRTCounter() + dataAcquisitionUsecTimeOut;
// check which one is the oldest buffer
int dmaIndex = 0;
for (dmaIndex = 1; dmaIndex < DMA_BUFFS; dmaIndex++) {
// Pointer to the header
uint32 *header = (uint32 *)dmaBuffers[dmaIndex];
if (*header < *oldestBufferHeader) {
oldestBufferHeader = header;
oldestBufferIndex = dmaIndex;
}
}
uint32 *oldestBufferFooter = oldestBufferHeader + NumberOfInputChannels() + HEADER_LENGTH;
uint32 oldestTimeMark = *oldestBufferFooter;
// If the data transfer is not in progress it means that the new data will
// be stored in the oldest buffer.
int64 actualTime = HRT::HRTCounter();
while (oldestTimeMark == *oldestBufferFooter) {
if(actualTime > stopAcquisition) {
return -1;
}
actualTime = HRT::HRTCounter();
}
if(*oldestBufferHeader == *oldestBufferFooter) return oldestBufferIndex;
return -2;
}
bool SingleATCAModule::WriteData(const int32 *&buffer){
for(int i = 0; i < numberOfAnalogueOutputChannels; i++){
#ifdef _LINUX
int32 toWrite[4];
toWrite[0] = moduleIdentifier;
toWrite[1] = outputMap[i];
toWrite[2] = *buffer++;
toWrite[3] = 0;
write(ATCAadcDrv::fileDescriptor, toWrite, 4 * sizeof(int32));
#else
WriteToDAC(moduleIdentifier, outputMap[i], *buffer++);
#endif
}
for(int i = 0; i < numberOfDigitalOutputChannels; i++){
#ifdef _LINUX
int32 toWrite[4];
toWrite[0] = moduleIdentifier;
toWrite[1] = 0;
toWrite[2] = *buffer++;
toWrite[3] = 1;
if(write(ATCAadcDrv::fileDescriptor, toWrite, 4 * sizeof(int32)) < 0){
CStaticAssertErrorCondition(FatalError,"SingleATCAModule::WriteData: Could not write the value : %d to module %d", toWrite[2], toWrite[0]);
return False;
}
#else
WriteToDIO(moduleIdentifier, 0, *buffer++);
#endif
}
return True;
}
bool SingleATCAModule::Poll(){
#ifdef _LINUX
static int firstTime = 1;
if(firstTime == 1){
SleepSec(1e-3);
firstTime = 0;
}
#endif
if(isMaster){
if (synchronizing) {
if(allowPollSleeping) {
//Allow the worstPollSleepJitter to decay -> 0
worstPollSleepJitter *= worstPollSleepJitterDecayRate;
int64 tStart = HRT::HRTCounter();
pollSleepTime = (nextExpectedAcquisitionCPUTicks - tStart) * HRT::HRTPeriod() - pollSleepTimeWakeBeforeUs - worstPollSleepJitter;
if(pollSleepTime > 0){
SleepNoMore(pollSleepTime);
float jitter = ((HRT::HRTCounter() - tStart) * HRT::HRTPeriod()) - pollSleepTime;
if(jitter < 0) jitter = -jitter;
if(jitter > worstPollSleepJitter){
worstPollSleepJitter = jitter;
}
}
}
int32 previousAcquisitionIndex = currentDMABufferIndex;
int32 currentDMA = CurrentBufferIndex();
if(currentDMA < 0){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::GetData: Returned -1");
return False;
}
currentDMABufferIndex = currentDMA;
// Update NextExecTime with a guess
nextExpectedAcquisitionCPUTicks = HRT::HRTCounter() + boardInternalCycleTicks;
int deltaBuffer = *dmaBuffers[currentDMABufferIndex] - *dmaBuffers[previousAcquisitionIndex];
int nOfLostPackets = deltaBuffer - boardInternalCycleTime;
if( *dmaBuffers[currentDMABufferIndex] == 0){
printf("dmaBuffers[currentDMABufferIndex]: %d, *dmaBuffers[previousAcquisitionIndex = %d\n", *dmaBuffers[currentDMABufferIndex], *dmaBuffers[previousAcquisitionIndex]);
}
if (( nOfLostPackets > 0)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::GetData: Lost %d Packets", nOfLostPackets / boardInternalCycleTime);
CStaticAssertErrorCondition(Warning,"SingleATCAModule::GetData: boardInternalCycleTime %d, deltaBuffer: %d", boardInternalCycleTime, deltaBuffer);
}
currentMasterHeader = *(dmaBuffers[currentDMABufferIndex]);
lastCycleUsecTime = (uint32)currentMasterHeader;
}
return True;
}
return False;
}
bool SingleATCAModule::GetData(int32 *&buffer){
/** Perform synchronisation */
if(isMaster){
if (synchronizing) {
buffer[0] = *dmaBuffers[currentDMABufferIndex];
buffer[1] = buffer[0];
// Skip the packet sample number and sample time
buffer += 2;
currentMasterHeader = *(dmaBuffers[currentDMABufferIndex]);
lastCycleUsecTime = (uint32)currentMasterHeader;
} else {
currentDMABufferIndex = GetLatestBufferIndex();
}
}else{
int32 *header = dmaBuffers[currentDMABufferIndex];
int32 *footer = header + NumberOfInputChannels() + HEADER_LENGTH;
if(*header != currentMasterHeader){
CStaticAssertErrorCondition(FatalError, "SingleATCAModule (slot=%d)::GetData: h (=%d) different from master h(=%d)", moduleIdentifier, *header, currentMasterHeader);
return False;
}
if(*header != *footer){
CStaticAssertErrorCondition(FatalError, "SingleATCAModule (slot=%d)::GetData: The header (=%d) is different from the footer(=%d)", moduleIdentifier, *header, *footer);
return False;
}
}
// Skip the Header in the DMA Buffer
int32 *src = (int32 *)dmaBuffers[currentDMABufferIndex] + 1;
int32 *dest = buffer;
memcpy(dest, src, NumberOfInputChannels()*sizeof(int32));
//This is introducing a huge delay (~1.5us per board). To be solved.
/*for(int i=0; i<NumberOfInputChannels(); i++){
channelStatistics[i].Update((float)(buffer[i] * 1.49e-8));
}*/
buffer += NumberOfInputChannels();
return True;
}
bool SingleATCAModule::ProcessHttpMessage(HttpStream &hStream) {
hStream.Printf("<table class=\"bltable\">\n");
hStream.Printf("<tr>\n");
hStream.Printf("<td>Module Identifier</td><td>%d</td>\n", moduleIdentifier);
hStream.Printf("</tr>\n");
hStream.Printf("<tr>\n");
hStream.Printf("<td>Master</td><td>%s</td>\n", isMaster ? "True" : "False");
hStream.Printf("</tr>\n");
hStream.Printf("</table>\n");
hStream.Printf("<table class=\"bltable\">\n");
hStream.Printf("<tr><th>Channel</th><th>Last</th><th>Mean</th><th>Variance</th><th>Abs Max</th><th>Abs Min</th><th>Rel Max</th><th>Rel Min</th></tr>\n");
int i=0;
for(i=0; i<NumberOfInputChannels(); i++){
hStream.Printf("<tr><td>%d</td><td>%.3e</td><td>%.3e</td><td>%.3e</td><td>%.3e</td><td>%.3e</td><td>%.3e</td><td>%.3e</td></tr>\n", i + 1, channelStatistics[i].LastValue(), channelStatistics[i].Mean(10), channelStatistics[i].Variance(10), channelStatistics[i].AbsMax(), channelStatistics[i].AbsMin(), channelStatistics[i].RelMax(), channelStatistics[i].RelMin());
}
hStream.Printf("</table>");
return True;
}
bool SingleATCAModule::ResetStatistics(){
int i=0;
for(i=0; i<NumberOfInputChannels(); i++){
channelStatistics[i].Init();
}
return True;
}
ATCAadcDrv::ATCAadcDrv(){
numberOfBoards = 0;
lastCycleUsecTime = 0;
modules = NULL;
synchronizing = False;
softwareTrigger = 0;
masterBoardIdx = -1;
autoSoftwareTriggerAfterUs = -1;
autoSoftwareTrigger = False;
#ifdef _LINUX
fileDescriptor = 0;
pageSize = sysconf(_SC_PAGE_SIZE);
#endif
css = "table.bltable {"
"margin: 1em 1em 1em 2em;"
"background: whitesmoke;"
"border-collapse: collapse;"
"}"
"table.bltable th, table.bltable td {"
"border: 1px silver solid;"
"padding: 0.2em;"
"}"
"table.bltable th {"
"background: gainsboro;"
"text-align: left;"
"}"
"table.bltable caption {"
"margin-left: inherit;"
"margin-right: inherit;"
"}";
}
bool ATCAadcDrv::EnableAcquisition(){
if(modules == NULL) return False;
#ifdef _RTAI
return (EnableATCApcieAcquisition() == 0);
#elif defined(_LINUX)
int ret = ioctl(fileDescriptor, PCIE_ATCA_ADC_IOCT_ACQ_ENABLE);
if(ret != 0){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Could not enable acquisition. ioctl returned : %d",Name(), ret);
return False;
}
#endif
return True;
}
bool ATCAadcDrv::DisableAcquisition(){
if(modules == NULL) return False;
#ifdef _RTAI
return (DisableATCApcieAcquisition() == 0);
#elif defined(_LINUX)
int ret = ioctl(fileDescriptor, PCIE_ATCA_ADC_IOCT_ACQ_DISABLE);
if(ret != 0){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Could not disable acquisition. ioctl returned : %d",Name(), ret);
return False;
}
#endif
return True;
}
bool ATCAadcDrv::ObjectLoadSetup(ConfigurationDataBase &info,StreamInterface *err){
#ifdef _LINUX
fileDescriptor = open("/dev/pcieATCAAdc0", O_RDWR);
if(fileDescriptor < 1){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Could not open device driver at: %s",Name(), "/dev/pcieATCAAdc0");
return False;
}
#endif
DisableAcquisition();
CDBExtended cdb(info);
if(!cdb.ReadInt32(softwareTrigger, "UseSoftwareTrigger",0)){
CStaticAssertErrorCondition(Warning,"SingleATCAModule::ObjectLoadSetup: UseSoftwareTrigger has not been specified. Assuming hardware trigger");
}
if(!GenericAcqModule::ObjectLoadSetup(cdb,err)){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: GenericAcqModule::ObjectLoadSetup failed",Name());
return False;
}
FString syncMethod;
if(!cdb.ReadFString(syncMethod, "SynchronizationMethod")){
CStaticAssertErrorCondition(InitialisationError,"ATCAAdcDrv::ObjectLoadSetup: SynchronizationMethod has not been specified.");
return False;
}
if (syncMethod == "GetLatest") synchronizing = False;
else synchronizing = True;
cdb.ReadInt32(autoSoftwareTriggerAfterUs, "AutoSoftwareTriggerAfterUs", -1);
autoSoftwareTrigger = (autoSoftwareTriggerAfterUs > 0);
if(autoSoftwareTrigger){
CStaticAssertErrorCondition(Information, "ATCAadcDrv::ObjectLoadSetup: %s the system will be automatically triggered after %d us", Name(), autoSoftwareTriggerAfterUs);
}
// Get buffer address from the driver exported function GetBufferAddress (only works in RTAI!)
#ifdef _RTAI
numberOfBoards = GetNumberOfBoards();
#elif defined(_LINUX)
int ret = ioctl(fileDescriptor, PCIE_ATCA_ADC_IOCT_NUM_BOARDS, &numberOfBoards);
if(ret != 0){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Could not query the number of boards. ioctl returned : %d",Name(), ret);
return False;
}
mappedDmaMemorySize = numberOfBoards * DMA_BUFFS * pageSize;
mappedDmaMemoryLocation = (int32 *)mmap(0, mappedDmaMemorySize, PROT_READ, MAP_FILE | MAP_SHARED | MAP_LOCKED | MAP_POPULATE | MAP_NONBLOCK, fileDescriptor, 0);
if(mappedDmaMemoryLocation == MAP_FAILED) {
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: MAP_FAILED",Name());
return False;
}
#else
numberOfBoards = -1;
#endif
if(!cdb->Move( "Modules")){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: No Module has been specified",Name());
return False;
}
int32 nOfATCAModules = cdb->NumberOfChildren();
if(nOfATCAModules!= numberOfBoards){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Number of installed boards [%d] differs from the number of specified boards [%d].",Name(),numberOfBoards,nOfATCAModules);
return False;
}
if(modules != NULL) delete[] modules;
modules = new SingleATCAModule[nOfATCAModules];
if(modules == NULL){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Failed allocating space for %d modules.",Name(),nOfATCAModules);
return False;
}
masterBoardIdx = -1;
for(int i = 0; i < nOfATCAModules; i++){
cdb->MoveToChildren(i);
cdb.WriteFString(syncMethod,"SynchronizationMethod");
if(!modules[i].ObjectLoadSetup(cdb,err)){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Failed initialising module %d.",Name(),i);
delete[] modules;
return False;
}
if(modules[i].isMaster){
if(masterBoardIdx == -1){
masterBoardIdx = i;
}else{
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Failed initialising module %d. A master board was already specified at index: %d",Name(),i,masterBoardIdx);
return False;
}
}
cdb->MoveToFather();
}
for(int i = 0; i < nOfATCAModules; i++){
#ifdef _LINUX
if(!modules[i].InstallDMABuffers(mappedDmaMemoryLocation)){
#else
if(!modules[i].InstallDMABuffers()){
#endif
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Board %d failed to initialise DMA buffers",Name(), i);
return False;
}
}
cdb->MoveToFather();
int32 extTriggerAndClock = 0;
if(!cdb.ReadInt32(extTriggerAndClock, "ExtTriggerAndClock",1)){
AssertErrorCondition(Warning,"ATCAadcDrv::ObjectLoadSetup: %s: ExtTriggerAndClock not specified, using default = %d",Name(), extTriggerAndClock);
}
#ifdef _LINUX
ret = ioctl(fileDescriptor, PCIE_ATCA_ADC_IOCT_SET_EXT_CLK_TRG, &extTriggerAndClock);
if(ret != 0){
AssertErrorCondition(InitialisationError,"ATCAadcDrv::ObjectLoadSetup: %s: Could not SetATCApcieExternalTriggerAndClock. ioctl returned : %d",Name(), ret);
return False;
}
#else
SetATCApcieExternalTriggerAndClock(extTriggerAndClock);
#endif
// Setup OK
AssertErrorCondition(Information,"ATCAadcDrv::ObjectLoadSetup: %s: initialized correctly ",Name());
EnableAcquisition();
return True;
}
bool ATCAadcDrv::ObjectDescription(StreamInterface &s,bool full,StreamInterface *err){
s.Printf("%s %s\n",ClassName(),Version());
return True;
}
bool ATCAadcDrv::WriteData(uint32 usecTime, const int32 *buffer){
if(buffer == NULL) return False;
const int32 *lBuffer = buffer;
for(int i = 0; i < numberOfBoards; i++){
modules[i].WriteData(lBuffer);
}
return True;
}
int32 ATCAadcDrv::GetData(uint32 usecTime, int32 *buffer, int32 bufferNum){
//Check buffer existence
if(buffer == NULL){
AssertErrorCondition(FatalError,"ATCAadcDrv::GetData: %s. The DDInterface buffer is NULL.",Name());
return -1;
}
int32 *lBuffer = buffer;
for(int i = 0; i < numberOfBoards; i++){
if(!modules[i].GetData(lBuffer)){
AssertErrorCondition(FatalError,"ATCAadcDrv::GetData: %s. Module %d failed acquiring data",Name(),i);
return -1;
}
}
return 1;
}
bool ATCAadcDrv::Poll(){
if(autoSoftwareTrigger){
if(lastCycleUsecTime > autoSoftwareTriggerAfterUs){
SoftwareTrigger();
}
}
bool ok = modules[masterBoardIdx].Poll();
if(!ok){
return ok;
}
// If the module is the timingATMDrv call the Trigger() method of
// the time service object
lastCycleUsecTime = modules[masterBoardIdx].lastCycleUsecTime;
for(int i = 0; i < nOfTriggeringServices; i++){
triggerService[i].Trigger();
}
return ok;
}
bool ATCAadcDrv::ProcessHttpMessage(HttpStream &hStream) {
hStream.SSPrintf("OutputHttpOtions.Content-Type","text/html");
hStream.keepAlive = False;
//copy to the client
hStream.Printf("<html><head><title>%s</title>", Name());
hStream.Printf( "<style type=\"text/css\">\n" );
hStream.Printf("%s\n", css);
hStream.Printf( "</style></head><body>\n" );
hStream.Printf("<table class=\"bltable\">\n");
int i=0;
hStream.Printf("<tr>\n");
for(i=0; i<numberOfBoards; i++){
hStream.Printf("<td>%d</td>\n", modules[i].BoardIdentifier());
}
hStream.Printf("</tr>\n");
hStream.Printf("<tr>\n");
for(i=0; i<numberOfBoards; i++){
hStream.Printf("<td>%s</td>\n", modules[i].isMaster ? "M" : "");
}
hStream.Printf("</tr>\n");
hStream.Printf("<tr>\n");
for(i=0; i<numberOfBoards; i++){
hStream.Printf("<td>%s</td>\n", modules[i].NumberOfOutputChannels() > 0 ? "R" : "");
}
hStream.Printf("</tr>\n");
hStream.Printf("<tr>\n");
hStream.Printf("<form>\n");
for(i=0; i<numberOfBoards; i++){
hStream.Printf("<td><button type=\"submit\" name=\"boardID\" value=\"%d\">.</button></td>\n", modules[i].BoardIdentifier());
}
hStream.Printf("</tr>\n");
hStream.Printf("</form>\n");
hStream.Printf("</table>\n");
hStream.Printf("<form>\n");
hStream.Printf("<td><button type=\"submit\" name=\"reset\" value=\"true\">Reset statistics</button></td>\n");
hStream.Printf("</form>\n");
FString reqBoardID;
reqBoardID.SetSize(0);
if (hStream.Switch("InputCommands.boardID")){
hStream.Seek(0);
hStream.GetToken(reqBoardID, "");
hStream.Switch((uint32)0);
}
FString reqReset;
reqReset.SetSize(0);
if (hStream.Switch("InputCommands.reset")){
hStream.Seek(0);
hStream.GetToken(reqReset, "");
hStream.Switch((uint32)0);
}
if(reqReset.Size() > 0){
for(i=0; i<numberOfBoards; i++){
modules[i].ResetStatistics();
}
}
if(reqBoardID.Size() > 0){
int32 boardID = atoi(reqBoardID.Buffer());
for(i=0; i<numberOfBoards; i++){
if(modules[i].BoardIdentifier() == boardID){
modules[i].ProcessHttpMessage(hStream);
break;
}
}
}
hStream.Printf("<p>Worst polling jitter (us): %f\n", modules[masterBoardIdx].worstPollSleepJitter * 1e6);
hStream.Printf("<p>Last polling sleep time (us): %f", modules[masterBoardIdx].pollSleepTime * 1e6);
hStream.Printf("</body></html>");
hStream.WriteReplyHeader(True);
return True;
}
OBJECTLOADREGISTER(ATCAadcDrv,"$Id: ATCAadcDrv.cpp,v 1.48 2010/02/09 14:50:59 ppcc_dev Exp $")